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Based on theoretical arguments, we have found that homogeneous indium oxide is a negative refractive
index material if doped with Cr. In accordance with calculations, this magnetic semiconductor or In2−xCrxO3 in
its polycrystalline form should possess a fully isotropic strongly pronounced negative refractive index at
�10.48 THz. The effect is due to the coexistence of the spin-wave mode with the plasmonic mode, and both
modes are activated by the electromagnetic field of the light with simultaneous permittivity and permeability
responses within the frequency band close to the ferromagnetic resonance. The analytical and numerical
calculations of the frequency-dependent refractive index, n���, were conducted in the framework of the
macroscopic theory of ferromagnets, the modified band theory, and the conduction electrons-mediated ex-
change integral formalism.
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I. INTRODUCTION

During the last several years, there has been tremendous
interest in optical systems which possess a negative index of
refraction. The existence of these systems, based on the
analysis of Maxwell equations for the propagating electro-
magnetic �e.m.� wave, was predicted a long time ago in the
papers of Mandel’shtam,1 Lamb,2 Shuster,3 and Veselago.4 In
an idealized situation, if one neglects losses in both electric
and magnetic subsystems, the permittivity, �, and the perme-
ability, �, are scalars rather than complex numbers. Such a
medium with negative refractive index, n�0, is character-
ized by both negative permittivity, ��0, and negative per-
meability, ��0, within some frequency range. This Vesela-
go’s condition to obtain negative refractive index was later
generalized to take into account the losses or the complex
nature of �=�1+ i�2, �=�1+ i�2, and n=n1+ in2.5 In the cal-
culation of complex refractive index, n= ����, the sign in
front of the radical is defined by the condition of passive
media, Im�n��0,6 and the negative refractive index corre-
sponds to Re�n��0.

The so-called negative refraction medium demonstrates
the optical properties or propagation characteristics, which
are dramatically different from those in a medium with posi-
tive refractive index. Since, in this kind of an optical mate-
rial, the Poynting vector and the phase velocity have oppo-
site directions, it should reveal reversal of both the Doppler
shift and Cherenkov radiation.4 Moreover, due to the anoma-
lous refraction, this material could be used to make, in prin-
ciple, the perfect lens �or superlens� with the resolution be-
yond the standard optical limit.7,8

The theoretical and experimental researches on negative
index metamaterials �NIMs� began in the microwave fre-
quency range,8 followed by the terahertz,9 and finally, during
last several years, has moved into the infrared10,11 and optical
region.12–19 A great deal of difficulty in the study of NIMs
originates from the fact that such optical systems are not
natural substances. Natural materials with negative real part
of the permittivity, �1�0, in some frequency range are not a
rarity �e.g., metals, semiconductors, and gaseous plasma�,

but the substances with negative real part of permeability,
�1�0, which coexists with �1�0 is difficult to find. The
examples of the materials with �1�0 are ferrites, but then
�1�0.4 This situation is especially pronounced in the optical
regime where the projection of spins onto the high-
frequency, �, magnetic field is actually zero due to the low
frequency, �p, of spin precession when compared with the
frequency of the e.m. wave �i.e., �p /��1�10−7�. Hence, as
follows from theoretical predictions,20 any optical substance
turns out to be principally nonmagnetic in the optical fre-
quency range ��=1�. Nevertheless, more recently, several
authors have argued that due to the alternative quantum co-
herence mechanisms, atomic vapors �e.g., Rb� can possess a
negative refractive index at optical range.21–23

The difficulty of finding natural media with negative re-
fractive index has led to the creation of artificial substances
possessing this effect. In these materials, complex �, �, and
n are treated as effective parameters, �eff, �eff, and neff, re-
spectively. We should emphasize that these parameters are
obtained from the analytical and computational solutions to
Maxwell’s equations which describe the scattering of an e.m.
wave in a principally inhomogeneous medium. In these in-
homogeneous NIMs, multilayered structures,13 plane dot
structures,15 quasiplane-arranged inclusion structures,14 or
the fishnet structure18 were utilized at optical �infrared�
range. For the 1–100 THz frequency range, the isotropic
NIM design based on a fully symmetric multigap single-ring
split-ring resonator �SRR� and crossing continuous wires was
suggested in Ref 19. However, all of these designs are inho-
mogeneous, and a homogeneous medium compared to these
designs would obviously not contain any inhomogeneity-
driven losses and would be much easier to fabricate.

In this paper, we report a homogeneous optical negative
refractive index material based on magnetic semiconductors
�MS�.24 The specific magnetic semiconductor is the recently
discovered Cr-doped indium oxide �IO�.25,26 The main idea
of the magnon-plasmon interference mechanism which leads
to the negative refractive index is the following. We achieve
the negative refractive index effect by simply utilizing the
well-known fact that in MS, the superposition of charge-
density waves �plasmons� and spin-density waves �magnons�
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is possible.24 Consequently, we explore the opportunity by
adjusting the appropriate parameters, such as the doping
level, x, to adjust the plasmon resonance frequency to a value
��p�10.8 THz� larger than the limiting spin-wave reso-
nance frequency of the ferromagnetic MS, 	S�10.48 THz,
while remaining in the frequency region, in which the plas-
mon losses are minimized. We will show analytically, based
on the theory of ferromagnetics,27 that in polycrystalline MS,
the appropriate permeability tensor, �lk���, is reduced to a
Drude-type scalar permeability function, ����. This perme-
ability function describes the nonzero response, �����1, in
the vicinity of the spin-wave resonance frequency, ��	s.
This magnetic response is accompanied by the electric re-
sponse, ����, due to the plasmons, and the combination of
both responses generates a negative index of refraction
within some bands. The width of this band, 
�, also depends
on the losses in the plasmonic and spin-wave subsystems, as
we will show below.

The closest approach to our design to achieve a negative
refractive index within a homogeneous material was recently
reported in Ref. 28. It was shown experimentally that ferro-
magnetic metal manganite La2/3Ca1/3MnO3 reveals a nega-
tive refractive index close to the frequency of the ferromag-
netic resonance at �150 GHz. The effect is based on the
described above interplay between ���� and ���� in the vi-
cinity of the ferromagnetic resonance in such a way that the
criteria of the negative refraction5 are satisfied with Re�n�
�0.

Our magnetic semiconductor IO doped with Cr possesses
negative refraction at a much higher-frequency level
�10 THz compared to 150 GHz �Ref. 28� due to the indi-
rect strong spin-spin ferromagnetic coupling which provides
high limiting spin-wave �resonance� frequency, 	s
�10.48 THz. Moreover, within the negative refraction
band, our level of losses, �= �Re�n� / Im�n���0.4, is much
smaller than losses, ��1, reported in Ref. 28. Also, our
polycrystalline magnetic semiconductor In2−xCrxO3 reveals a
fully isotropic effect if compared with highly anisotropic
single-crystal manganite La2/3Ca1/3MnO3.

Spin waves �magnons� were also utilized in the terahertz
range of a hypothetical NIM in Ref. 29. However, this
metamaterial is both inhomogeneous and highly anisotropic.
In this situation, the suggested metamaterial consists of alter-
nating layers of nonmagnetic semiconductor and nonconduc-
tive antiferromagnetic material. An attempt to reach a nega-
tive refractive index by using the amphoteric refraction
conditions was developed in Ref. 30. Also, a similar
approach based on the nonmagnetic semiconductors
In0.53Ga0.47As and Al0.48In0.52As was reported recently in
Ref. 31. As was explained in Ref. 32, both Refs. 30 and 31
actually do not involve the negative refractive index effect
but rather illustrate the phenomenon of counterposition.32

The plan of the paper is as follows. Our main objective is
to validate the negative refractive index effect in the pro-
posed Cr-doped indium oxide. Since we need the analytical
expressions for the permeability function, ����, for the prob-
lem of the polycrystalline sample, we will derive it first. The
calculation of this so-called “orientational” permeability is
conducted in the framework of both the macroscopic theory
of ferromagnets and the classical scheme for the homogeni-

zation of ���� in polycrystals.33,34 Second, we will calculate
the limiting �resonance� spin-wave frequency, 	s, which
enters the expression for permeability function, ����, from
the conduction electrons-mediated exchange integral
formalism.35 Next, based on the modified band theory,36 we
will calculate the plasmon frequency, �p, which defines the
Drude permittivity function, ����, in MS, and which depends
on the doping and the oxygen deficiency levels in Cr-doped
indium oxide.26 Finally, we will conduct parametric studies
to reach a desirable negative refractive index and study the
influence of the parameters of the plasmons and magnons on
the effect.

II. PERMEABILITY FUNCTION FOR POLYCRYSTALLINE
FERROMAGNET

Our material of choice, the magnetic semiconductor,
In2−xCrxO3, in its single-crystal form, possesses high-
temperature ferromagnetism with a Curie temperature, TC
�300 K.26 The appropriate equilibrium magnetization, M0
�3�BNCr, where NCr=1.6�1022�1 /cm3�, corresponds to the
total moment, J=3 /2, of the randomly distributed Cr3+ ions
in In2−xCrxO3, with a density NCr��0.1–1.6��1022�1 /cm3�,
depends on the doping level x�1.0. In our situation, M0 is
within the limits ��100–300� G−1 depending on the values
for NCr. This theoretical value, J=3 /2, is in agreement with
experimental results �J�1.8� reported in Ref. 26, and the
small difference 
J /J�0.15, as we believe, is due to the
background ferromagnetism of the undoped IO.

The single-crystal susceptibility tensor, 
l,j���, and hence,
a permeability tensor, �lj���=1+4�
l,j���, of a single-
crystal ferromagnet is anisotropic.27 In order to reduce the
permeability tensor, �l,j���, to permeability function, ����,
we will consider a polycrystalline magnetic semiconductor,
In2−xCrxO3.

Our calculations are based on the macroscopic theory of
spin waves in single-crystal ferromagnets described in the
most general form by Akhiezer et al.27 In accordance with

this formalism, the oscillations in the magnetization, M� �r� , t�,
of a single-crystal ferromagnet around the equilibrium value,

M� 0, in the Fourier representation are expressed as

ml�k�,�� = 
lj�k�,��hj�k�,�� , �1�

where hl�k� ,�� and ml�k� ,�� are the lth Fourier components of
the external frequency-dependent magnetic field and its re-
sponse, appropriately, and 
l,j�k� ,�� is the magnetic-
susceptibility tensor,


lj�k�,�� = �
xx 
xy 0


yx 
yy 0

0 0 0
� , �2�


xx =
�g�BM0/��	1

	1	2 − �2 , 
yy =
�g�BM0/��	2

	1	2 − �2 , �3�


xy = − 
yx =
i��g�BM0/��

	1	2 − �2 ,

ADIL-GERAI KUSSOW AND ALKIM AKYURTLU PHYSICAL REVIEW B 78, 205202 �2008�

205202-2



	1 = �g�BM0/��	�ljklkj +
M� 0 · H� 0

�l�

M0
2 + � cos2 �
 ,

	2 = �g�BM0/��	�ljklkj +
M� 0 · H� 0

�l�

M0
2 + � cos 2�
 . �4�

Here, � is the angle between the anisotropy axis, n� , and the

vector, M� 0; the z axis lies along M� 0 and the x axis lies in the

plane containing the vectors n� and M� 0. � is the magnetic
anisotropy constant, �B is the Bohr magneton, �lj is the ten-
sor which describes the dispersion, g is the spectroscopic

splitting factor, and H� 0
�l� is the internal magnetic field. The

internal magnetic field, H� 0
�l�, depends on the external �ap-

plied� magnetic field H� 0
�e� and the demagnetization tensor N̂

as

H� 0
�l� = H� 0

�e� − 4�N̂ · M� 0. �5�

There are useful simplifications for the ferromagnet with cu-
bic symmetry27 �In2−xCrxO3 crystallizes with a bixbyite
C-type cubic sesquioxide crystal structure�. In these crystals,

in the long-wave approximation, k� =0, M� 0 �H� 0
�l�, and the ten-

sor 
lj��� become symmetric in x and y directions;


xx��� = 
yy���, 	1 = 	2 = 	s,

	s = 	g
�B

�

�H0

�e� − 4�N� · M� 0� + g	�B

�

M0�� . �6�

Here, �=2 if the magnetization axis lies along the edge of
the cube and �=4 /3 if it lies along the space diagonal of the
cube. It should be mentioned that even in this situation, the
tensor, 
lj���, although symmetric, is still anisotropic.

Expression �2� describes the magnetic-susceptibility ten-
sor 
l,j�k� ,�� of the low-frequency branch ���1 THz� of
the collective spin-wave �magnon� excitations. As follows
from Eq. �6�, the resonance frequency, 	s, increases with the
doping density NCr due to the magnetic dipole moment M0
�3�BNCr. On other hand, the optical high-frequency branch
��1 THz of the magnetic excitations corresponds to the
motion of the individual spin in the local crystal magnetic
field.27 In this situation, the appropriate magnetic-
susceptibility tensor due to the symmetry is still expressed by
Eq. �2� with the Lorentzian components given by Eq. �3� but
with modified resonance frequency 	s.

27 Since 	s describes
the local indirect interaction between the magnetic ion and
the conduction electrons, rather than the direct interactions
between magnetic ions, the limiting resonance frequency on
the boundary of the Brillouin zone should not depend on the
doping density, NCr �III below�. Indeed, this result was dem-
onstrated by Liu35 from the conduction electrons-mediated
exchange integral formalism. Still, both the magnetic oscil-
lation strength f �M0�NCr �or the numerator of expression
�3�
 and, consequently, the magnetic permeability � depends
on NCr.

In our calculations we are interested in the high-frequency
spin-wave problem within the �1–100� THz regime rather
than in the low-frequency regime. As the following calcula-

tions demonstrated below, the limiting high-frequency �reso-
nance�, 	s�10.48 THz. In this frequency range, IO pos-
sesses the refractive index n�2,37,38 and the appropriate
wavelength in the material is ��15 �m. This wavelength
should be compared with the average typical size, D, of the
polycrystal grain to find out if the homogenization of the
permeability function, �, is possible.

To estimate D, one should consider the parameters of the
typical low-angle grain boundary. The low-angle grain
boundary is characterized by Burgers vector, b�r0�1
�10−8 �cm�, of the edge dislocations which constitute the
boundary39,40 and which are separated an average distance,
L�b. Due to the low-angle misorientation of the lattices,
two adjacent grains produce almost identical permeability
responses. Moreover, the contribution to the permeability
from the normally nonmagnetic boundary is small due to the
small thickness, b, of the boundary when compared with the
size of the grain, D.33 The misorientation low angle, �� b

L
�1, between adjacent grains is due to two neighboring edge
dislocations on the boundary, and D can be estimated as D
�L2 /b. For the typical dislocation parameters, b�1
�10−8 �cm� and L��10–30�b, the appropriate value for D
is �1 �m, which is much smaller than ��15 �m. Hence,
one may conclude that the homogenization of � is possible,
and one can employ the standard procedure for calculation of
the effective or the so-called “rotational” permeability, �e, of
the polycrystal.33 The aforementioned fact that the perme-
ability changes smoothly between adjacent grains also sup-
ports the homogenization procedure due to small wave scat-
tering by boundaries. In accordance with the homogenization
approaches,33,34 the macroscopic behavior of � is isotropic
for the randomly oriented grains in the polycrystal, and � is
reduced to an effective scalar value, �e;

�e =
�rD

�r� + D
� �r, �7�

where ��b�D is the small thickness of the grain boundary
and �r=1+4�
̄lj is the rotational permeability33 given by
averaging the susceptibilities, 
lj���, of the differently ori-
ented grains over their randomly distributed orientations,


̄lj��� =� � � d�d�d� �
p,q=1

3


p,q����A−1�pl�A−1�qk. �8�

Here, Â�� ,� ,�� is the rotational matrix which depends on
the Euler angles �� ,� ,��. The appropriate calculation of the
integral in Eq. �8� reduces the tensor 
lj��� given by Eq. �2�
to the scalar susceptibility function 
���= � 2

3 �
�g�B/��M0	s

	s
2−�2 ,

which generates the following Drude-type rotational mag-
netic permeability function:

���� = 1 +
2

3

�4�g�B/��M0	s

	s
2 − �2 . �9�

The permeability function, since complex, should include the
losses, �, and the imaginary part of ���� can be recovered
from the real part of ���� �Eq. �9�
 by the standard Kramers-
Kronig transformation. The appropriate analytical Kramers-
Kronig calculation, with high accuracy �1− �� /	S�2�1 and
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� /	S�1
, provides the following expression for the com-
plex ����:

���� = 1 +
�8�g�BM0	s/3��

	s
2 − �2 +

i���8�g�BM0	s/3��
�	s

2 − �2�	s
2 .

�10�

The results of the numerical Kramers-Kronig calculations
with an accuracy of �95% were found to be close to the
analytical expression �10� within the range of parameters of
interest.

Alternatively, the reasonable approximation for ���� can
be obtained from Eq. �9� by the formal substitution �→�
+ i� in the denominator. Since the Kramers-Kronig calcula-
tion is obviously more rigorous and is close to the numerical
results, despite of the inherent singularity in Re�����
 at the
resonance, we will use Eq. �10� in the following analysis.

As follows from Eq. �10�, near the resonance, ��	s,
within the narrow window 
�� /	s�1, there is a consider-
able magnetic response with both the positive, Re�����

�0, and the negative, Re�����
�0, real parts of the perme-
ability, as illustrated in dimensionless units in Fig. 1.

Hence, for any polycrystalline ferromagnet with cubic
symmetry, close to the ferromagnetic resonance, ��	s, the
frequency window always exists with considerable magnetic
response, ����1.

As we will show below, the permeability function from
Eq. �10�, combined with the Drude permittivity function,
����, provides a refractive index,5,6 n���=���������, with
a negative real part Re�n���
�0 within some band, 
�
�
��, close to the ferromagnetic resonance frequency, 	s.

III. SPIN-WAVE (MAGNON) FREQUENCY

As follows from expression �10�, the permeability func-
tion, ����, depends on the spin-wave �magnon� frequency,
	s. Hence, 	s needs to be calculated or at least estimated

with the highest possible accuracy. The spin-wave dispersion
relation for crystals with cubic symmetry is isotropic in the q
space and is given by27

��q�� � 	WJ

�

�1 − cos	qr0

2

� , �11�

with the wave vector q� , 0�q�� /r0 within the Brillouin
zone, and WJ as the exchange integral which depends on the
details of the spin-spin interaction mechanisms. The limiting
spin-wave frequency, �max�W /�, on the boundary of the
Brillouin zone �qmax=� /r0� corresponds to the exchange in-
tegral, WJ, which describes the interaction of an individual
magnetic ion �Cr3+� with the lattice. This limiting frequency,
�max=	s, is associated with the resonance frequency, 	s,
from expressions �9� and �10� for the permeability. Hence,
the limiting spin-wave �resonance� frequency, 	s=WJ /�, is
defined by the exchange integral, WJ. In its turn, the ex-
change integral, WJ, critically depends on the specific
mechanism of the ferromagnetism in Cr-doped IO. In accor-
dance with the experimental data,26 the strong ferromagnetic
ordering of Cr-doped IO takes place even at a small doping
level �i.e., x�0.1� and is unlikely to be due to the direct
exchange mechanism because of the large separation of mag-
netic Cr ions. Hence, the indirect exchange mechanism due
to the conduction electrons mediated exchange should be
responsible for the ferromagnetism in Cr-doped IO. Conse-
quently, our calculation of 	s=WJ /� is based on the appro-
priate Liu theory of the indirect exchange developed in Ref.
35. In this theory, the exchange Coulomb interaction between
magnetic shell electrons of the impurity �or ion� and the
conduction electrons is derived analytically from first prin-
ciples. The Liu model considers the magnetic ion �Cr3+� with
unfilled shell and noncompensated moment, J= �L−S�. Here,
L is the orbital moment and S is the total spin of the shell
calculated in accordance with the Hund rule. The magnetic
ions are in a sea of conduction electrons, and each ion inter-
acts with conduction electrons so the total interaction can be
obtained by summing overall the conduction electrons and
all the ions. The conduction electron belongs simultaneously
to the whole crystal and to the 3d shell of the ion which is
less than half filled. In accordance with both the Pauli prin-
ciple and the Hund rule, there are three electrons in 3d outer
magnetic shell with m=2, 1, and 0 projections of the orbital
moment l=2 onto the fixed z axis. Consequently, Liu’s35 ex-
change Hamiltonian, H, which describes the interaction of
the magnetic ion with the sea of the conduction electrons,
does not depend on either the density of magnetic ions �N
=NCr� nor the density of conduction electrons, ne. The appro-
priate expression for Liu’s35 Coulomb exchange Hamil-
tonian, with the eigenvalue H0=WJ, is given by

H = − 2I�k,k���g − 1�s�J� , �12�

where s is the spin of the conduction electron and k ,k� are
the wave vectors of the initial and the final state of the con-
duction electron, respectively. The exchange energy I�k ,k��
is given by

0.9999 1 1.0001
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Dimensionless Frequency (ω/Ω
s
)

µ

Re(µ)

Im(µ)

FIG. 1. The real, Re����̃�
, and the imaginary, Im����̃�
, parts
of the permeability function from Eq. �10� in dimensionless units,
�̃=� /	s, with losses, � /	s=0.1, and NCr=1.6�1022 cm−3 which
corresponds to x=1.0
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I�k,k�� =
4�e2

�2l + 1��r1,
�

r2
R��rj�R�rN+1�u0

��rN+1�u0�rj�j0

��k�rN+1�j0�krj�
�r��l

�r��l+1rN+1
2 rj

2drjdrN+1, �13�

with the spectroscopic splitting factor,

g = 1 + �J�J + 1� + S�S + 1� − L�L + 1�
/2J�J + 1� . �14�

Here, the wave function of the conduction electron, ��r� ,s�,
assumes the Bloch form,

��r�,s� = uk�r��exp�ik�r��
 , �15�

where 
 is the Pauli spinor. The rj and rN+1 are the coordi-
nates of the electron in magnetic shell and in conduction
band, respectively, e is the charge of an electron, and l is the
orbital moment of the electron in magnetic shell of an ion.
The function R�r� is the r-dependent coordinate function of
the Bohr atom and j0�kr�=sin�kr� /kr is the Bessel function
of zero order. The atomic configurations of the Cr atom and
the Cr3+ ions are appropriately Cr:1s22s22p63s23p63d54s1

and Cr3+ :1s22s22p63s23p63d3, and the Cr3+ ion magnetic
shell parameters are S=3 /2, L=3, and J=3 /2. In accordance
with first-principles calculations,38,41 the conduction electron
of the Bloch state, in IO, has an effective mass of meff
�0.3me �me is the mass of an electron�. Since the resonant
Cr d states do not hybridize with the s states of indium and
do not affect the dispersion of the conduction band,41 the
effective mass of In2−xCrxO3 should be similar to the one of
pure IO. Also, we will make the standard assumption that the
conduction electron is in 4s1 state and the mixture of the p
state is small. This assumption allows the estimation of the
largest magnitude of the exchange integral since the mixture
of non-s states decreases the integral I�k ,k��.35

The appropriate wave functions R�r�=Rn=3,l=2�r� and
uk�r�=uo�r�=Rn=4,l=0�r� are given below;

R32�r� = 	 2z

3a0

3/2 1

12�5
exp�−

1

2
	 2zr

3a0

�	 2zr

3a0

 , �16�

u0�r� = R40�r� = 	 z

2a01

3/2	4 − 6� + 2�2 −

1

8
�3
exp	−

1

2
�
 ,

� =
zr

2a01
, a =

�2

me2 , a01 =
�2

meffe
2 . �17�

The calculation of the two-dimensional �2D� exchange inte-
gral �Eq. �13�
 was performed by a Monte Carlo algorithm
�VEGAS� described elsewhere42 with an accuracy of �0.001.
The spin-wave frequency, 	s=WJ /�=H /�, as calculated
from the Hamiltonian �Eq. �12�
, was found to be close to
	s=10.48 THz. Since the calculated ferromagnetic spin-
wave coupling �	s�1.8kT is approximately two times
larger than the thermal energy kT at room temperature, our
result supports the experimentally verified Curie temperature
in In2−xCrxO3 which is well above 300 K.26 The substitution
of the magnon �spin-wave� frequency, 	s, into expression
�10� generates the frequency-dependent permeability func-
tion, ����, of interest.

IV. PERMITTIVITY FUNCTION

The plasmon frequency, �p, enters the extended Drude
expression43 for the permittivity function of a semiconductor,
����, with losses, �, as follows:

���� = ��	1 −
�p

2

�2 + i��

 , �18�

where ���0.8 �Ref. 38� is the permittivity at infinite fre-
quency. In its turn, �p, depends on the density, nc, of the
electric charges �electrons in our situation of Cr-doped IO26�,

�p =�4�nce
2

��meff
. �19�

Hence, in order to find the permittivity function, ����, one
needs to calculate the density of the electrons in the conduc-
tion band, nc. The density, nc, depends on two factors: the
doping level, x, or the density of Cr ions, NCr, and the density
of the oxygen deficiency, NO, at the fabrication stage.25,44 In
accordance with the experimental data,25,44 the main source
of free-electron carriers in IO is the nonstoichiometric oxy-
gen deficiency. Still, in our calculation of nc, we will also
take into account the possible electron donation into nc from
the Cr atoms. In the calculation of nc we will utilize the
modified band-theory approach36 where the input parameters
are the density of an oxygen deficiency NO �which depends
on the details of fabrication, such as oxygen pressure44� and
the density NCr of Cr ions.

In an attempt to increase the accuracy of the calculations
of nc, we utilize the modified band-theory model.36 The
modification to the standard band-theory calculation36 comes
from the mutual repulsion of electrons on donors’ Bohr or-
bits which will effectively reduce the splitting of the donor
level from the bottom of the conduction band. This qualita-
tive result follows from the positive sign of e-e repulsion
energy when compared with negative sign of the splitting of
donor level from the bottom of the conduction band in band-
theory model.

We will consider the simple model when each ion �Cr3+ or
O2+� is surrounded by six atoms of the same nature; so the
distance between two neighbors, l, is a free parameter which
can be calculated from the concentration NCr,O of the ions in
the matrix,

l =
1

�NCr,O�
1/3. �20�

Since the wave functions of the nearest ions overlap, one can
calculate the appropriate Coulomb energy correction given
by 
Ed=3�
Ee-e due to the overlapping. As a result, the
splitting energy, Ed-corr, of a donor is the sum of the standard
band-theory result24 Ed plus the Coulomb correction 
Ed,

Ed-corr = Ed + 3�
Ee-e = − 	Z

n

2meffe

4

2�2�0
2 + 3�
Ee-e, �21�

with �0�4.4 as the static dielectric constant of IO,37 n is the
Bohr orbit number, Z is the charge of an ion, and the energy
is measured from the bottom of the conduction band.

NEGATIVE REFRACTION INDEX IN THE MAGNETIC… PHYSICAL REVIEW B 78, 205202 �2008�

205202-5



Since the second term is positive and the first term is
negative, the Coulomb correction decreases the absolute
value of splitting energy, pushing electrons from the donor
level into the conduction band. Hence, the Coulombic term
always increases the donation of the electrons into the con-
duction band. Consequently, we should substitute the expres-
sion for the density of the donated electrons into the conduc-
tion band from the standard band theory,24

nc =�NCr,ONeff

2
exp�−

�Ed�
2kBT

� , �22�

by the following expression with Coulomb energy correc-
tion,

nc =�NCr,ONeff

2
exp�−

�Ed-corr�
2kBT

� , �23�
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FIG. 2. Extended band-theory calculation of the donation rate
kO of oxygen deficiency ions. �a� Coulombic repulsion energy 
Ee-e

for oxygen ions �eV�. �b� Dimensionless donation ratio kO=nc /NO

for oxygen ions.
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Ee-e for Cr ions
�eV�. �b� Dimensionless donation ratio kCr=nc /NCr for Cr ions.
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Neff =
1

4�2	2�meffkBT

�2 
3/2

. �24�

Since the magnitude of the 
Ee-e correction increases with
concentration of ions, this correction will unconditionally in-
crease the donation rate when the distance between ions be-
comes smaller �or the concentration of ions, NCr,O, becomes
larger�. Ultimately, Eq. �23� provides the full donation
�nc /NCr,O�1� from the donor level into the conduction band
if the densities, NCr,O�NCr,O

crit , are large enough. This situa-
tion physically corresponds to the insulator-metal
transition,24 and we will calculate the nc and the threshold
critical densities, NCr,O

crit . We should emphasize that the ap-
proximation of the band theory breaks down when NCr,O
�NCr,O

crit �Ref. 36� and nc /NCr,O�1.
The overlapping integral, 
Ee-e, in Eq. �21� depends on

the spins of two electrons located on nearest ions. The singlet
and triplet states are possible, and these states will give vary-
ing results for 
Ee-e with an accuracy of an exchange energy.
Despite the fact that the exchange term is smaller than sin-
glet or triplet energies, we wish to take this effect into ac-
count by the calculation of the energy Ee-e averaged over
both states,


Ee-e =
1

2
�

r1

�
r2

��S
��r1,r2��S�r1,r2�

+ �A
��r1,r2��A�r1,r2�


e2

�r1 − r2�
dr1

3dr2
3, �25�

with the singlet �S� and triplet �A� wave functions of the
standard form,

�S�r1,r2� =
1
�2

��a�r1��b�r2� + �a�r2��b�r1�� ,

�A�r1,r2� =
1
�2

��a�r1��b�r2� − �a�r2��b�r1�� . �26�

The calculation of the six-dimensional �6D� exchange inte-
gral �25� was performed by the Monte Carlo VEGAS

algorithm.42 The calculated corrections to energy 
Ee-e and
the donation rates nc /NCr,O as the functions of the density of
ions NCr,O are shown in Figs. 2 and 3.

One can see from Figs. 2 and 3 that in both situations of
Cr ions and oxygen deficiency ions, the corrections to the
energy 
Ee-e and the donation ratios nc /NO,Cr increase
slowly with the density of ions until some threshold critical
densities NCr,O

crit . The appropriate critical densities NO
crit�1

�1019�1 /cm3� and NCr
crit�4.0�1019�1 /cm3� correspond to
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FIG. 5. �a� The index of refraction and �b� the loss ratio �= � Im�n�
Re�n� � for heavily doped �x=1.0� of IO with Cr and acceptor: NCr=1.6

�1022 cm−3, ne=3.5�1017 cm−3 and � /��0.1 for � /	s�1�10−3.
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the total donation nc /NO,Cr�1.0 or insulator-metal
transition.24 One should emphasize that the onset of the total
donation happens at much smaller critical density of oxygen
deficiency than the critical density of chromium �NO

crit /NCr
crit

�0.25�. Hence, one can conclude that the oxygen deficiency
donates the electrons into the conduction band much more
effectively than the Cr ion. This result partially justifies the
conclusions of experimental papers26,44 that in undoped IO,
the mechanism of donation is due to the oxygen deficiency.
But we should add that in accordance with our calculations
described above, Cr ions donate electrons as well although at
higher densities. In other words, the total donation rate is the
sum of two rates k=kO+kCr, and even in an ideally fabricated
Cr-doped IO, with no oxygen deficiencies �e.g., at high oxy-
gen pressure on fabrication phase44�, the conduction band
still will be populated due to the donation from Cr ions.

Finally, the substitution of the calculated density of elec-
trons in the conduction band, nc, into the expression for the
plasmon frequency, �p, given by Eq. �19�, and Eq. �19� into
Eq. �18� determines the permittivity, ����, as a function of
densities of Cr ions, NCr, and oxygen deficiency, NO. The
densities NCr and NO are input parameters for calculation
of the permittivity function �Eqs. �18� and �19�
, and they
depend on the doping level, x, for Cr, �NCr=1.6
�1022�1 /cm3�
, and the fabrication details for the oxygen
deficiency �e.g., oxygen pressure�. The density ne=NCr also
affects the magnetization M0�3�BNCr which enters expres-

sion �10� for the permeability function. In accordance with
experimental data,25,26 in Cr-doped IO, the typical total plas-
mon losses, which are due to the scattering of electrons by
electrons, phonons, and defects can be estimated as �0 /�p
�0.1.

V. REFRACTIVE INDEX CALCULATIONS

Expressions �10�, �18�, and �19� are utilized to calculate
the frequency-dependent refractive index, n���, for the
specified level of doping, x �or the density NCr=1.6
�1022 cm−3 of Cr atoms�. In this calculation, we will con-
sider the situation when the oxygen deficiency is suppressed
at the fabrication stage �e.g., high oxygen pressure44�; so the
only source of the conduction electrons is Cr ions �ne=NCr�.
Also, for the sake of simplicity, we have assumed a small
driven external field H0

�e��0. In expression �10�, which de-
scribes the permeability function, the equilibrium magnetiza-
tion M0�3�BNCr is proportional to the product of nonsat-
urated total magnetic moment M =3�B of the Cr ion and the
density of the Cr atoms. In expressions �18� and �19� for the
permittivity function, the density of the electrons nc�NCr� in
the conduction band depends on NCr, and one should con-
sider two different scenarios of donation, which correspond
to insulatorlike or metal-like situations, appropriately.

As follows from our calculations described in Sec. VI, in
the situation of heavy doping when the density of Cr atoms is
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ADIL-GERAI KUSSOW AND ALKIM AKYURTLU PHYSICAL REVIEW B 78, 205202 �2008�

205202-8



larger than the threshold of the insulator-metal transition
NCr�NCr

crit�4.0�1019�1 /cm3� �metal-like�, the Cr ions do-
nate all electrons into the conduction band and nc�NCr�
�NCr. In the situation of modest doping NCr�NCr

crit�4.0
�1019�1 /cm3� �insulatorlike�, the donor Cr atoms donate
electrons into the conduction band only partially nc�NCr.

Initially, calculations of the refractive index5,6 for heavy
doping, where NCr=ne=1.6�1022�1 /cm3�, with doping level
�x=1.0��20% Cr�
 were conducted. In this calculation, we
have utilized experimentally verified levels of losses in the
plasmonic subsystem, � /��0.1.25,26 In accordance with
both experimental and theoretical data,45–48 depending on the
specific ferromagnetic, the losses in the spin-wave system
can change in a very broad range �1�10−5�� /	s�1
�10−3�, and they can be much larger �� /	s�1�10−1� on
the boundary of the Brillouin zone at resonance49,50 �ex-
amples are Co �Ref. 49� and Fe �Ref. 50�
. Since, for our
specific material, the exact magnitude of losses is not known,
we have considered different levels of losses, including the
large losses, � /	s�0.1.

The result of the calculation with the moderate losses,
� /	s�1�10−3, in the spin-wave subsystem is shown in
Fig. 4, and one can see a strongly pronounced �Re�n��
−50
 negative refractive index band with a high loss ratio,
�= �Im�n� /Re�n���1, within a narrow bandwidth �
� /	s
�0.1%�. The calculation with other losses, 1�10−5

�� /	s�1�10−1, provides similar results to Fig. 4.

In order to reduce losses in the scattered wave and to
increase the bandwidth of the negative refractive index ef-
fect, we have considered additional doping with an acceptor
�e.g., Cd of group II, or Ag of group I�. If the acceptor has
almost the same density as the density of Cr �NA�NCr�, the
effective total density of the electrons in the conduction band
can be considerably reduced without affecting the permeabil-
ity function, which depends only on NCr. The plasmon fre-
quency, �p, will be much closer to the spin-wave frequency,
	s, and, consequently, the region of overlapping of spin-
wave resonance with plasmon resonance is much wider. If
�p is smaller than 	s �or ne�3.5�1017 cm−3�, the negative
refractive index band disappears. Moreover, the losses in the
plasmon subsystem increase above ne=4�1017 cm−3. Our
calculations show that there is a characteristic plasmon fre-
quency, �p=�Cr�10.8 THz, which corresponds to ne=nCr
=3.5�1017 cm−3 where the losses from the plasmon sub-
system are minimized and the resulting negative refractive
index band has lower losses.

For this situation of additional doping with an acceptor,
the results of the calculations, for x=1.0, with the moderate
�� /	s�1�10−3� and high �� /	s�1�10−1� losses in the
spin-wave subsystem are shown in Figs. 5 and 6, respec-
tively. One can see a strongly pronounced negative refractive
index band with a low loss ratio �= �Im�n� /Re�n���0.45
even for the highest possible losses in the magnetic sub-
system �� /	s�1�10−1�, as shown in Fig. 6. In the situation
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FIG. 7. �a� The index of refraction and �b� the loss ratio �= � Im�n�
Re�n� � for moderate doping �x=0.06� of IO with Cr and acceptor: NCr
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of moderate losses in the magnetic subsystem �� /	s�1
�10−3�, the loss ratio, ��0.4, is also small.

Next, we have looked at the impact when the density of
Cr decreases from NCr�1.6�1022�1 /cm3� �x=1.0� to NCr

�1�1021 �1 /cm3� �x=0.06�, keeping all other parameters
the same as in Fig. 5. The appropriate results are shown in
Fig. 7. As follows from these figures, the negative refractive
index effect still survives with a moderate loss ratio ��0.6.

In summary, the negative refractive index effect exists in
all modeled situations, and the NIM band is stable with re-
spect to change in the main design parameter, Cr dopant
level, x, which is to be larger than �0.04. Also, the effect
was found to be stable with respect to the losses in the mag-
netic subsystem �1�10−5�� /	s�0.1� and exists even for
the worst case scenario of highest possible losses, � /	s

�0.1, when additional acceptor doping is considered. Also,
one can see that the losses, ��0.4, within the negative re-
fractive index band are close to the total losses in the electric
and magnetic subsystems. In the situation of inhomogeneous
NIM designs,8–19 the additional inhomogeneity-driven losses
are normally an order of magnitude larger than losses in
plasmonic subsystem.

Interestingly, the calculations show that the losses in the
spin-wave subsystem, �, affect the negative refractive index
effect much less dramatically than the losses, �, in the plas-
mon subsystem. Nevertheless, despite the fact that the typi-
cal losses in the spin-wave subsystem �1�10−5�� /	s�1
�10−1� are smaller than the typical losses in plasmon sub-
system � /�p�0.1, the magnitude of � is still an important
factor for the negative refractive index effect. Since the ex-
perimentally measured typical bandwidth of the magnetic
resonance in semiconductors constitutes 1–100 Oe,45,46 the
appropriate ���1�107–1�109� Hz corresponds to small
dimensionless losses, � /	s�1�10−6–1�10−4. Also, the
aforementioned loss level, ��1 /�, correlates well with both
the calculation of the spin-wave relaxation time, ��1
�10−8 s, due to the magnon-phonon interactions48 and
experimental relaxation measurements, ���1�10−6–1
�10−7� s, in ferromagnetic resonance.47 As we have already
mentioned above, in accordance with both the theoretical
calculations and experimental results,49,50 the losses become
much larger �up to � /	s�1�10−1� in the situation of the
resonance when the wave vector of the spin wave belongs to
Brillouin zone. It is important to stress that as follows from
our calculations, the losses in the magnetic subsystem do not

destroy the negative refractive index band, and the bottle-
neck of the effect is still the plasmonic subsystem.

VI. CONCLUSIONS

In conclusion, based on the presented calculations, we
predict that the homogeneous magnetic semiconductor
In2−xCrxO3, in its polycrystalline form, should possess the
negative refractive index effect at �10.48 THz. The esti-
mates of the reasonably narrow negative refractive index
bandwidth 
� /	s�0.1% along with the magnitude of the
negative refractive index �Re�n��−1.0
 and a decent loss
ratio �Im�n� /Re�n���0.4 support the viability of the sug-
gested effect. The mechanism of the negative refractive in-
dex effect is due to the simultaneous considerable permittiv-
ity and permeability responses in the vicinity of the
ferromagnetic resonance close to the boundary of the Bril-
louin zone. The dopant magnetic-moment-carrying atoms of
Cr donate the electrons into the conduction band, and the
indirect exchange interaction or Liu mechanism between the
magnetic ions and the conduction electrons is responsible for
the ferromagnetic behavior. In this situation, the equilibrium
magnetization M0, which enters the expression for the per-
meability function ����, increases with ratio x of the Cr
dopant. Since the permittivity function ���� depends on the
same parameter x due to the donation of electrons into the
conduction band �plasmon density�, x is an adjustable param-
eter of the theory. In our situation of In2−xCrxO3, the appro-
priate x��0.3–1.0� corresponds to heavy doping with Cr
when every second In atom is substituted by Cr. We should
mention that even much smaller x�0.1 provides the ferro-
magnetic behavior of In2−xCrxO3 with Curie temperature
well above room temperature, as we know from the
experiment.26 In accordance with our calculations, the nega-
tive refractive index effect should exist even in this situation
although with more narrow band 
� /	s�0.01% and high
losses.

Since the homogeneous NIM designs obviously have sev-
eral advantages over the traditional inhomogeneous metama-
terials �i.e., easy of fabrication�, we hope that the utilization
of the magnetic semiconductors will be useful in fast-
developing field of negative refractive index effect.
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